to experiment with its more oblique control systems? Will growing
gardens of code ever become a mainstream activity?
In fact, we can get our hands dirty already. And we can do it just

by playing a game.

It's probably fair to say that digital media has been wrestling with
“control issues” from its very origins. The question of control, after
all, lies at the heart of the interactive revolution, since making some-
thing interactive entails a shift in control, from the technology—or
the puppeteers behind the technology-—to the user. Most recurring
issues in interactive design hover above the same underlying ques-
tion: Who's driving here, human or machine? Programmer or user?
These may seem like esoteric questions, but they have implications
that extend far beyond design-theory seminars or cybercafé philos-
ophizing. 1 suspect that we're only now beginning to understand
how complicated these issues are, as we acclimate to the strange
indirection of emergent software.

In a way, we've been getting our sea legs for this new environ-
ment for the past few years now. Some of the most interesting
interactive art and games of the late nineties explicitly challenged
our sense of control or made us work to establish it. Some of these
designs belonged to the world of avant-garde or academic experi-
mentation, while others had more mainstream appeal. But in all
these designs, the feeling of wrestling with or exploring the possi-
bilities of the software—the process of mastering the system—was
transformed from a kind of prelude to the core experience of the
design. It went from a bug to a feature.

There are different ways to go about challenging our sense of
control. Some programs, such as the ingenious Tap, Type, Write—
created by MIT’s John Maeda—make it immediately clear that the
user is driving. The screen starts off with an array of letters; hitting



a specific key triggers a sudden shift in the letterforms presented
on-screen. ' he overall effect is like a fireworks show sponsored by
Alphabet Soup. Press a key, and the screen explodes, ripples,
reorders itself. It’s hypnotic, but also a little mystifying. What algo-
rithm governs this interaction? Something happens on-screen
when you type, but it takes a while to figure out what rules of trans-
formation are at work here. You know you're doing something, you
just don't know what it is.

The OSS code, created by the European avant-punk group
Jodi.org, messes with our sense of control on a more profound—
some would say annoying—Ilevel. A mix of anarchic screen-test
patterns and eclectic viral programming, the Jodi software is best
described as the digital equivalent of an aneurysm. Download the
software and the desktop overflows with meaningless digits; launch
one of the applications, and your screen descends instantly into an
unstable mix of static and structure. Move the mouse in one direc-
tion, or double click, and there’s a fleeting sense of something
changing. Did the flicker rate shift? Did those interlaced patterns
reverse themselves? At hard-to-predict moments, the whole picture
show shuts down—invariably after a few frantic keystrokes and
command clicks—and you're left wondering, Did I do that?

No doubt many users are put off by the dislocations of Tap,
Type, Write and OSS, and many walk away from the programs
feeling as though they never got them to work quite right, precisely
because their sense of control remained so elusive. For me, I find
these programs strangely empowering; they challenge the mind in
the same way distortion challenged the ear thirty-five years ago
when the Beatles and the Velvet Underground first began over-
loading their amps. We find ourselves reaching around the noise—
the lack of structure—for some sort of clarity, only to realize that
it’s the reaching that makes the noise redemptive. Video games

remind us that messing with our control expectations can be fun,



even addictive, as long as the audience has recognized that the con-
fusion is part of the show. For a generation raised on MTV’s
degraded images, that recognition comes easily. The Nintendo gen-
eration, in other words, has been well prepared for the mediated
control of emergent software.

Take as example one of the most successful titles from the Nin-
tendo64 platform, Shigeru Miyamoto's Zelda: Ocarina of Time,
Zelda embodies the uneven development of late-nineties interac-
tive entertainment. The plot belongs squarely to the archaic world
of fairy tales—a young boy armed with magic spells sets off to res-
cue the princess. As a control system, though, Zelda is an incredi-
bly complex structure, with hundreds of interrelated goals and
puzzles dispersed throughout the game’s massive virtual world.
Moving your character around is simple enough, but figuring out
what you're supposed to do with him takes hours of exploration and
trial and error. By traditional usability standards, Zelda is a com-
plete mess: you need a hundred-page guidebook just to establish
what the rules are. But if you see that opacity as part of the art—
like John Cale’s distorted viola—then the whole experience
changes: you're exploring the world of the game and the rules of the
game at the same time.

Think about the ten-year-olds who willingly immerse them-
selves in Zelda's world. For them, the struggle for mastery over the
system doesn't feel like a struggle. They've been decoding the land-
scape on the screen—guessing at causal relations between actions
and results, building working hypotheses about the system’s under-
lying rules—since before they learned how to read. The conven-
tional wisdom about these kids is that they're more nimble at
puzzle solving and more manually dexterous than the TV genera-
tion, and while there’s certainly some truth to that, I think we lose
something important in stressing how talented this generation is
with their joysticks. I think they have developed another skill, one



hat the con-

on MTV’s
ntendo gen-
he mediated

»m the Nin-
na of Time.
ties interac-
rchaic world
ts off to res-
s an incredi-
d goals and
rtual world.
figuring out
loration and
da is a com-
to establish
of the art—
. experience

e rules of the

nerse them-
tery over the
ng the land-
ween actions
tem's under-
T'he conven-
e nimble at
TV genera-
hink we lose
generation is

her skill, one

Control Artist

that almost looks like patience: they are more tolerant of being out
of control, more tolerant of that exploratory phase where the rules
don’t all make sense, and where few goals have been clearly defined.
In other words, they are uniquely equipped to embrace the more
oblique control system of emergent software. The hard work of
tomorrow’s interactive design will be exploring the tolerance—that
suspension of control—in ways that enlighten us, in ways that

move beyond the insulting residue of princesses and magic spells.

With these new types of games, a new type of game designer has
arisen as well. The first generation of video games may have indi-
rectly influenced a generation of artists, and a handful were adopted
as genuine objets d'art, albeit in a distinctly campy fashion. (Table-
top Ms. Pac-Man games started to appear at downtown Manhat-
tan clubs in the early nineties, around the time the Museum of the
Moving Image created its permanent game collection.) But artists
themselves rarely ventured directly into the game-design industry.
Games were for kids, after all. No self-respecting artist would
- immerse himself in that world with a straight face.

But all this has changed in recent years, and a new kind of

hybrid has appeared—a fusion of artist, programmer, and complex-
ity theorist—creating interactive projects that challenge the mind
and the thumb at the same time. And while Tap, Type, Write and

Zelda were not, strictly speaking, emergent systems, the new gen-

eration of game designers and artists have begun explicitly describ-
ing their work using the language of self-organization. This too
brings to mind the historical trajectory of the rock music genre. For
the first fifteen or twenty years, the charts are dominated by lowest-
common-denominator titles, rarely venturing far from the estab-
lished conventions or addressing issues that would be beyond the
reach of a thirteen-year-old. And then a few mainstream acts begin




to push at the edges—the Beatles or the Stones in the music world,
Miyamoto and Peter Molyneux in the gaming community—and
the expectations about what constitutes a pop song or a video game
start to change. And that transformation catches the attention of
the avant-garde—the Velvet Underground, say, or the emergent-
ga::ne designers—who suddenly start thinking of pop music or
video games as a legitimate channel for self-expression. Instead of
writing beat poetry or staging art happenings, they pick up a
guitar—or a joystick.

By this standard, Eric Zimmerman is the Lou Reed of the new
gaming culture. A stocky thirty-year-old, with short, club-kid hair
and oversize Buddy Holly glasses, Zimmerman has carved out a
career for himself that would have been unthinkable even a decade
apo: bouncing between academia (he teaches at NYU's influential
Interactive Telecommunications Program), the international art
scene (he’s done installations for museums in Geneva, Amsterdam,
and New York), and the video-game world. Unlike John Maeda
and or Jodi.org, Zimmerman doesn't “reference” the iconography of
gaming in his work—he openly embraces that tradition, to the
extent that you have to think of Zimmerman's projects as games
first and art second. They can be fiendishly fun to play and usually
involve spirited competition between players. But they are also self-
consciously designed as emergent systems.

“One of the pleasures of what I do,” Zimmerman tells me, over
coffee near the NYU campus, “is that you get to see a player take
what you've designed and use it in completely unexpected ways.”
The designer, in other words, controls the micromotives of the
player’s actions. But the way those micromotives are exploited—
and the macrobehavior that they generate—are out of the
designer’s control. They have a life of their own.

Take Zimmerman’s game Gearheads, which he designed during
a brief sojourn at Phillips Interactive in 1996. Gearheads is a pure-



bred emergent system: a meshwork of autonomous agents follow-
ing simple rules and mutually influencing each other’s behavior. It
is a close relative of StarLogo or Gordon’s harvester ants, but it’s
ingeniously dressed up to look like a modern video game. Instead of
spare colored pixels, Zimmerman populated the Gearhead world
with an eclectic assortment of children’s toys that march across the
screen like a motley band of animated soldiers.

“There are twelve windup toys,” Zimmerman explains. “You
design a box of toys by choosing four of them. You wind up your toy
and release it from the edges of the game board, and the goal of the
game is to get as many toys as possible across your opponent’s side
of the screen. Each of the toys has a unique set of behaviors that
affect the behavior of other toys.” A skull toy, for instance, “fright-
ens” toys that it encounters, causing them to reverse direction,
while an animated hand winds up other toys, allowing them to
march across the screen for a longer duration. As with the harvester
ants or the slime mold cells, when one agent encounters another
agent, both agents may launch into a new pattern of behavior,
Stumble across your hundredth forager of the afternoon, and you'll
switch over to midden duty; stumble across Zimmerman’s skull toy
and you'll turn around and go the other way.

“The key thing is that once you've released your toys, they're
autonomous, You're only affecting the system from the margins,”
Zimmerman says. “It’s a little chaos machine: unexpected things
happen, and you only control it from the edges.” As Zimmerman
tested Gearheads in early 1996, he found that this oblique control
system resulted in behavior that Zimmerman hadn'’t deliberately
programmed, behavior that emerged out of the local interactions of
the toys, despite the overall simplicity of the game.

“Two toys reverse the direction of other toys—the skull, and the
Santa toy, who's called Krush Kringle,” Zimmerman says. “He walks
for a few steps and then he pounds the ground, and all the toys near



180

EMERGENGE

him reverse direction. During our testing, we found a combination
where you could release one Krush Kringle out there, then the walk-
ing hand that winds up toys, then another Krush Kringle. The hand
would run out and wind up the first Krush, and then the Krush
would pound the floor, reversing the direction of the hand, and send-
ing it back to the second Krush, which it would wind up. Then the
second Krush would stomp on the ground, and the hand would turn
around and wind up the first Krush. And so the little system of these
three toys would march together across the screen, like 2 small flock
of birds. The first time we saw it happen, we were astonished.”

These unexpected behaviors may not seem like much at first
glance, particularly in a climate that places so much emphasis on
photo-realistic, 3-D worlds and blood-spattering combat. Zimmer-
man’s toys are kept deliberately simple; they don’t simulate intelli-
gence, and they don't trigger symphonies of surround sound through
your computer speakers. A snapshot of Resnick’s slime molds looks
like something you might have seen on a ﬁrst—genération Atari con-
sole. But I'll put my money on the slime molds and Krush Kringles
nonetheless. Those watermelon clusters and autowinding flocks
strike me as the very beginning of what will someday form an enor-
mously powerful cultural lineage. Watching these patterns emerge
spontaneously on the screen is a little like watching two single-
celled organisms decide to share resources for the first time. It
doesr’t look like much, but the same logic carried through a thou-
sand generations, or a hundred thousand—like Hillis growing his
gardens of code—can end up changing the world. You just have to
think about it on the right scale.

Most game players, alas, live on something close to day-trader
time, at least when they’re in the middle of a game—thinking more

about their next move than their next meal, and usually blissfully




oblivious to the ten- or twenty-year trajectory of software develop-
ment. No one wants to play with a toy that’s going to be fun after a
few decades of tinkering—the toys have to be engaging now, or
kids will find other toys. And one of the things that make all games
so engaging to us is that they have rules. In traditional games like
Monopoly or go or chess, the fun of the game—the play—is what
happens when you explore the space of possibilities defined by the
rules. Without rules, you have something closer to pure improv
theater, where anything can happen at any time. Rules give games
their structure, and without that structure, there’s no game: every
move is a checkmate, and every toss of the dice lands you on Park
Place.

This emphasis on rules might seem like the antithesis of the
open-ended, organic systems we've examined over the preceding
chapters, but nothing could be further from the truth. Emergent
systems too are rule-governed systems: their capacity for learning
and growth and experimentation derives from their adherence to
low-level rules: ants choosing to forage or not, based on patterns in
their encounters with other ants; the Alexa software making con-
nections based on patterns in the clickstream. If any of these
systems—or, to put it more precisely, the agents that make up these
systems—suddenly started following their own rules, or doing away
with rules altogether, the system would stop working: there'd be no
global intelligence, just a teeming anarchy of isolated agents, a
swarm without logic. Emergent behaviors, like games, are all about
living within the boundaries defined by rules, but also using that
space to create something greater than the sum of its parts.

Understanding emergence should be a great boon for the video-
game industry. But some serious challenges face the designers of
games that attempt to harness the power and adaptability of self-
organization and channel it into a game aimed at a mass audience.

And those challenges all revolve around the same phenomenon: the



capacity of emergent systems to suddenly start behaving in unpre-
dictable ways, sorcerer’s-apprentice style—like Zimmerman’s flock
of Krush Kringles.

Consider the case of Evolva, a widely hyped game released in
mid-2000 by a British software company called Computer Art-
works. The product stood as something of a change for CA, which
was last seen marketing a trippy screen-saver called Organic Art
that allowed you to replace your desktop with a menagerie of alien-
looking life-forms. That program came bundled with a set of
prepackaged images, but more adventurous users could also grow
their own, “breeding” new creatures with the company'’s A-Life
technology. While the Organic Art series was a success, it quickly
became clear to the CA team that inferacting with your creatures
would be much more entertaining than simply gazing at snapshots
of them. Who wants to look at Polaroids of Sea-Monkeys when
you can play with the adorable little critters yourself?

And so Computer Artworks turned itself into a video-game
company. Evolva was their first fully interactive product to draw
upon the original artificial-life software, integrating its mutation
and interbreeding routines into a game world that might otherwise
be mistaken for a hybrid of Myth and Quake. The plot was
standard-issue video-game fare: Earth has been invaded by an alien
parasite that threatens world destruction; as a last defense, the
humans send out packs of fearless “genohunters” to save the planet.
Users control teams of genohunters, occupying the point of view of
one while issuing commands to the others. A product of biological
engineering themselves, genohunters are capable of analyzing the
DNA of any creature they kill and absorbing useful strands into
their own genetic code. Once you've absorbed enough DNA, you
can pop over to the “mutation” screen and tinker with your genetic
makeup—adding new genes and mutating your existing ones,
expanding your character’s skills in the process. It’s like suddenly



learning how to program in C++, only you have to eat the guy from
tech support to see the benefits.

That appetite for DNA gives the A-Life software its entrée into
the gameplay. “As the player advances through the game, new genes
are collected and added to the available gene pool,” lead program-
mer Rik Heywood explained to me in an e-mail conversation.
“When the player wants to modify one of their creations, they can
go to the mutation screen. Starting from the current set of DNA,
two new generations can be created by combining the DNA from
the existing genohunter with the DNA in the collected gene pool
and some slight random mutations. The new sets of DNA are used
to morph the skin, grow appendages all over the body, and develop
new abilities, such as breathing fire or running faster.”

The promotional material for Evolva makes a great deal of noise
about this open-endedness. Some 14 billion distinct characters can
be generated using the mutation screen, which means that unless
Computer Artists strikes a licensing deal with other galaxies, players
who venture several levels deep in the game will be playing with
genetically unique genohunters. For the most part, those mutations
result in relatively superficial external changes, more like a new paint
job than an engine overhaul. The more sophisticated alterations to
the genohunters’ behavior—fire-breathing, laser-shooting, long-
distance jumping, among others—are largely discrete skills pro-
grammed directly by the CA team. You won't see any genohunters
spontaneously learning how to play the cello or use sonar. The bod-
ies of your genohunters may end up looking dramatically different
from where they started, but those bodies won't let their hosts adopt
radically new skills.

These limitations may well make the game more enjoyable. For
a sixteen-year-old Quake player who's just trying to kill as many
parasites as possible on his way to the next level, suddenly learning
how to read braille is only going to be a distraction. Anyone who



has spent time playing a puzzle-based narrative game like Myst
knows nothing is more frustrating than spending two hours trying
to solve a puzzle that you don't yet have the tools to solve, because
you haven't stumbled across them in your explorations of the game
space. Imagine how much more frustrating to get stumped by a
puzzle because you haven't evolved gills or lock-picking skills yet.
In a purely open-ended system—where the tools may or may not
evolve depending on the whims of natural selection—that frustra-
tion would quickly override any gee-whiz appeal of growing your
own characters. And so Heywood and his team have planted DNA
for complex skills near puzzles or hurdles that require those skills.
“For example, if we wanted to be sure that the player had developed
the ability to breath fire by a particular point in the game,” he
explains, “we would block the path with some flammable plants
and place some creatures with a fire-breathing ability nearby.”

The blind watchmaker of Evolva’s mutation engine turns out to
have some sight after all. Heywood's solution might be the smartest
short-term move for the gamers, but it's worth pointing out that it
also runs headlong against the principles of Darwinism. Not only
are you playing God by deliberately selecting certain traits over
others, but the DNA for those traits is planted near the appropri-
ate obstacles. It’s like some strange twist on Lamarckian evolution:
the giraffe neck grows longer each generation, but only because the
genes for longer necks happen to sprout next to the banana trees.
The space of possibility unleashed by an open-ended Darwinian
engine was simply too large for the rule-space of the game itself. A
game where anything can happen is by definition not a game.

Is there a way to reconcile the unpredictable creativity of emergence
with the directed flow of gaming? The answer, I think, will turn out
to be a resounding yes, but it'’s going to take some trial and error.



One way involves focusing on traditional emergent systems—such
as flocks and clusters—and less on the more open-ended landscape
of natural selection. Evolva is actually a great example of the virtues
of this sort of approach. Behind the scenes, each creature in the
Evolva world 1s endowed with sensory inputs and emotive states:
fear, pain, aggression, and so on. Creatures also possess memories
that link those feelings with other characters, places, or actions—
and they are capable of sharing those associations with their com-
rades. As the web of associations becomes more complex, and more
interconnected, new patterns of collective behavior can evolve, cre-
ating a lifelike range of potential interactions between creatures in
the world.

“Say you encounter a lone creature,” Heywood explains. “When
you first meet it, it is maybe feeling very aggressive and runs in to
attack your team. However, you have it outnumbered and start
causing it some serious pain. Eventually fear will become the dom-
inant emotion, causing the creature to run away. It runs around a
corner and meets a large group of friends. It communicates with
these other creatures, informing them of the last place it saw you.
Being in a large group of friends brings its fear back down, and the
whole group launches a new attack on the player.” The group
behavior can evolve in unpredictable ways, based on external events
and each creature’s emotional state, even if the virtual DNA of
those creatures remains unchanged. There 1s something strangely
comforting in this image, particularly for anyone who thinks social
patterns influence our behavior as readily as our genes do. Hey-
wood had to restrict the artificial-life engine because the powers of
natural selection are too unpredictable for the rules-governed uni-
verse of a video game. But building an emergent system to simulate
collective behavior among characters actually improved the game-
play, made it more lifelike without making it impossible. Emer-

gence trumps “descent with modification” you may not be able to



186

EMERGENCE

use Evolva’s mutation engine to grow wings, but your creatures can
still learn new ways to flock.

There is a more radical solution to this problem, though, and
it's most evident in the god-games genre. Classic games like
SimCity—or 1999’ best-selling semi-sequel The Sims, which lets
game players interact with simulated personalities living in a small
neighborhood—have dealt with the unpredictability of emergent
software by eliminating predefined objectives altogether. You
define your own goals in these games; you're not likely to get stuck
on a level because you haven’t figured out how to “grow” a certain
resource, for the simple reason that there are no preordained levels
to follow. You define your own hurdles as you play. In SimCity, you
decide whether to build a megalopolis or a farming community;
whether to build an environmentally correct new urbanist village or
a digital Coketown. Of course, you may find it hard to achieve
those goals as you build the city, but because those goals aren’t part
of the game’s official rules, you don't feel stuck in the same way that
you might feel stuck in Evolva, staring across the canyon without
the genes for jumping.

There’s a catch here, though. “The challenge is, the more
autonomous the system, the more autonomous the virtual creatures,
the more irrelevant the player is,” Zimmerman explains. “The prob-
lem with a lot of the ‘god games’is that it’s difficult to feel like you're
having a meaningful impact on the system. It’s like you're wearing
these big, fuzzy gloves and you're trying to manipulate these tiny
little objects.” Although it can be magical to watch a Will Wright
simulation take on a life of its own, it can also be uniquely frustrat-
ing—when that one neighborhood can’t seem to shake offits crime
problem, or your Sims refuse to fall in love. For better or worse, we
control these games from the edges. The task of the game designer
is to determine just how far off the edge the player should be.

Nowhere is this principle more apparent than in the control




panel that Will Wright built for The Sims. Roll your cursor along
the bottom of the screen while surveying your virtual neighbor-
hood, and a status window appears, with the latest info on your
characters’ emotional and physical needs: you'll see in an instant
whether they've showered today, or whether they're pining for some
companionship. A click away from that status window is a control
panel screen, where you can adjust various game attributes. A “set-
tings” screen is by now a standard accoutrement of any off-the-shelf
game: you visit the screen to adjust the sound quality or the graph-
ics resolution, or to switch difficulty levels. At first glance, the con-
trol panel for The Sims looks like any of these other settings
screens: there’s a button that changes whether the window scrolls
automatically as you move the mouse, and another that turns off
the background music. But alongside these prosaic options, there 1s
a toggle switch that says, in unabashed Cartesian terms, “Free will.”

If you leave “Free will” off, The Sims quickly disintegrates
into @ nightmare of round-the-clock maintenance, requiring the
kind of constant attention youd expect in a nursery or a home for
Alzheimer’s patients. Without free will, your Sims simply sit
around, waiting for you to tell them what to do. They may be starv-
ing, but unless you direct them to the fridge, they’ll just sit out their
craving for food like a gang of suburban hunger artists. Even the
neatest of the Sims will tolerate piles of rotting garbage until you
specifically order them to take out the trash. Without a helpful
push toward the toilet, they'll even relieve themselves right in the
middle of the living room.

Playing The Sims without free will selected is a great reminder
that too much control can be a disastrous thing. But the opposite
can be even worse. Early in the design of The Sims, Wright recog-
nized that his virtual people would need a certain amount of auton-
omy for the game to be fun, and so he and his team began
developing a set of artificial-intelligence routines that would allow



the Sims to think for themselves. That Al became the basis for the
character’s “free will,” but after a year of work, the designers found
that they'd been a little too successful in bringing the Sims to life.

“One of our biggest problems here was that our Al was too
smart,” Wright says now. “The characters chose whichever action
would maximize their happiness at any given moment. The prob-
lem is that they're usually much better at this than the player.” The
fun of The Sims comes from the incomplete information that you
have about the overall system: you don’t know exactly what combi-
nation of actions will lead to a maximum amount of happiness for
your characters—but the software behind the Al can easily make
those calculations, because the happiness quota is built out of the
game’s rules. In Wright's early incarnations of the game, once you
turned on free will, your characters would go about maximizing
their happiness in perfectly rational ways. The effect was not unlike
hiring Deep Blue to play a game of chess for you—the results were
undeniably good ones, but where was the fun?

And so Wright had to dumb down his digital creations. “We did
it in two ways,” he says. “First, we made them focus on immediate
gratification rather than long-term goals—they'd rather sit in front
of the TV and be couch potatoes than study for a job promotion.
Second, we gave their personality a very heavy weight on their deci-
sions, to an almost pathological degree. A very neat Sim will spend
way too much time picking up—even after other Sims—while a
sloppy Sim will never do this. These two things were enough to
ensure that the player was a sorely needed component—ambition?
balance?—of their world.” In other words, Wright made their deci-
sions local ones and made the rules that governed their behavior
more intransigent. For the emergent system of the game to work,
Wright had to make the S5ims more like ants than people.

I think there is something profound, and embryonic, in that
“free will” button, and in Wright's battle with the autonomy of his



creations—something both like and unlike the traditional talents
that we expect from our great storytellers. Narrative has always
been about the mix of invention and repetition; stories seem like
stories because they follow rules that we've learned to recognize,
but the stories that we most love are ones that surprise us in some
way, that break rules in the telling, They are a mix of the familiar
and the strange: too much of the former, and they seem stale, for-
mulaic; too much of the latter, and they cease to be stories. We love
narrative genres—detective, romance, action-adventure—but the
word generic is almost always used as a pejorative.

It misses the point to think of what Will Wright does as
storytelling—it doesn't do justice to the novelty of the form, and its
own peculiar charms. But that battle over control that underlies any
work of emergent software, particularly a work that aims to enter-
tain us, runs parallel to the clash between repetition and invention
in the art of the storyteller. A good yarn surprises us, but not too
much. A game like The Sims gives its on-screen creatures some
autonomy, but not too much. Emergent systems are not stories, and
in many ways they live by very different rules, for both creator and
consumer. (For one, emergent systems make that distinction a lot
blurrier.) But the art of the storyteller can be enlightening in this
context, because we already accept the premise that storytelling #s
an art, and we have a mature vocabulary to describe the gifts of its
practitioners. We are only just now developing such a language to
describe the art of emergence. But here’s a start: great designers like
Wright or Resnick or Zimmerman are control artists—they have a
teel for that middle ground between free will and the nursing
home, for the thin line between too much order and too little. They
have a feel for the edges.



	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189

